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Abstract. User interfaces accessible to nontechnical people are essential for the widespread adoption
of any technology. In the case of standalone computers, a key breakthrough was the invention of the
graphic user interface. As computers started to be connected to one another, another key breakthrough
followed with the invention of the web browser. There is a need for a similarly bold step forward
enabling ordinary people to interact with the decentralized internet, or web3. These new user interfaces
need to be familiar enough that people do not feel lost or overly intimidated. At the same time, they
must help people intuitively understand that the decentralized internet is fundamentally different to
what has gone before, revealing for ordinary users the inherent superiority in the underlying technology.
We hope our work in this document will form the basis of a new and better approach to how data
storage and computation is communicated to users in all form factors.

1. Background and introduction

Let us start with a definition:

Definition 1. Suppose Bob receives a message M .
If Bob is able to independently verify the truth
of proposition P using no information other than
what is contained in M, we say that Bob has con-
cluded that P is true in a way that is trustless. We
will call the pair (M,P ) a certificate. If a certifi-
cate is conveyed in digital form, for example using
a telecommunications network, we call it a digital
certificate.

From the armchair, it is not obvious that there
can be any certificates. When Bob receives the
message, Bob has no knowledge of who sent the
message, nor does Bob trust whatever communi-
cation system was used to convey the message to
him.

In fact, even well before the invention of com-
puters or modern telecommunications, people ex-
changed certificates. An example is a message
adorned with a wax seal. The receiver of such
a message is not able to independently verify the
truth of the message itself, but they are able, by
inspecting the seal, to conclude that whoever was
in possession of the message at the time the seal
was applied was in possession of the stamp that
makes that particular seal.

It is important here that it be impossible to re-
verse engineer the stamp from the wax seal, and
this explains the use of wax as the medium for the
seal; it is both fragile and vulnerable to heat, and

any attempt to make a negative impression, for ex-
ample with molten metal, will immediately destroy
the wax seal and produce no impression.

This example of using seals to stamp docu-
ments is entirely analogous to the use of public
key cryptography on the internet. If a user visits
bankofamerica.com in a browser they may very
reasonably want to know that the website they see
is indeed provided by Bank of America, and not an
imposter. If this was done via documents sent in
the mail, Bank of America could apply a wax seal
made using its official Bank of America stamp. To-
day, they use RSA or some equivalent technology
to sign the packets of data using a private key that
corresponds to their public key. Analogously to
the wax seal, it is impossible to reverse engineer
the private key from the public key and signature
applied to the message. Also analogously to the
wax seal, a user is able to independently verify the
sender of the message insofar that they can be sure
the originator of the message or packets of data
was in possession of something secret and special,
either a stamp or a private key.

Despite this, a user still has to take certain
things on trust when it comes to deducing the orig-
inator of the message. Most important, the recipi-
ent of a sealed or signed message has to know what
a valid seal or signature looks like. If a recipient of
a message purporting to be from Queen Elizabeth I
has no idea what her seal is supposed to look like,
how can they know if it is real or fake? This is
analogous to the problem of matching a public key
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on the internet with a real identity of some sort.
The solution to this problem on today’s internet

is to bake into the browser1 or operating system2

of the client computer a list of trusted public keys.
Because these trusted public keys and their respec-
tive owners are baked into software that is widely
disseminated, the lists of trusted public keys are
also widely disseminated.

This is analogous to assuming that everyone
knows what the seal of Queen Elizabeth I looks
like and trusts her not to lie about other people’s
seals. From there, if another person wants to verify
their identity, they present a document that shows
their seal has been vouched for by the known seal.
For example, if the Duke of Norfolk wanted to send
a message to someone and enable the receiver to
verify that it was from him, he could send the mes-
sage with his own seal, together with a message
from Elizabeth I, signed with her seal, declaring:
“This is the seal of the Duke of Norfolk.”

Again, this is entirely analogous to the public
key cryptography used in all modern web browsers.
The root authorities are analogous to Queen Eliza-
beth I, and instead of signing a document that says
“this is the seal of the Duke of Norfolk,” they sign
a digital certificate that says: “This is the public
key of bankofamerica.com.”

In practice, there is a lot more complexity to
public key cryptography than what is described
above. For example, the number theoretic cryp-
tosystem RSA was not known until the late 1960s
and not made public until 1977. Moreover, there
are usually layers of delegated authority between
the root certificate baked into a browser or operat-
ing system and the domain name a user visits. Cer-
tificates have expiry dates, which raises the thorny
question of how the current time on the client is
determined, and under some circumstances certifi-
cates may be revoked, with the signing of yet an-
other certificate.

All this complexity is hidden from a regular
user. Instead, the result of decades of research in
applied cryptography is that the user sees a sim-
ple icon of a padlock. If the padlock appears, that
says to the user: “This website is indeed the web-
site indicated in the address bar.” If the padlock is
missing or has a line through it, that means: “This
website might not be the website indicated in the

address bar; you might be being tricked.” Many
ordinary users do not even have this basic under-
standing of what the padlock means, and simply
interpret it as a vague sentiment of safety for what-
ever website they are visiting.

It is important that the padlock appears outside
the rectangle of screen rendered by the website it-
self, as shown in Figure 1. If the padlock appeared
on or over the rectangle of screen rendered by the
website, then a dishonest website, for example pro-
vided by a man-in-the-middle imposter, could draw
their own padlock.

Figure 1. A padlock, crucially
outside the rectangle of screen
rendered by the website.

This is the current state of user interface design
for normal users of the internet when it comes to
the cryptographic soundness of the data they are
viewing and interacting with. Provided the user
trusts their browser or operating system to be judi-
cious in its selection of root certificate authorities,
the user may be sure that they are indeed visiting
the website indicated in the address bar, and that
is all.

The end user has no guarantees whatsoever that
the website owner is not misleading or manipulat-
ing them in manifest different ways. A social media
site can delete, distort or invent posts. A banking
app can fabricate financial records. An email ser-
vice can suppress email from competitors. Airlines
can tell one user one price for a seat and another

1For example: https://chromium.googlesource.com/chromium/src/+/main/net/data/ssl/chrome_root_store/

root_store.md
2For example: https://support.apple.com/en-us/HT213464
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user another price. Beyond knowing that a website
is indeed providing data from the owner of that do-
main, a user has no assurance as to the truth or
falsity of anything they see or interact with, and
no ability whatsoever to audit let alone change the
processes that resulted in them being shown that
information.

It hardly needs stating that this failure to pro-
vide end users with reliable trustless information is
a central argument in favor of the decentralized in-
ternet, or web3. Today a sophisticated user can
know in the true trustless sense that they have
been sent the Bitcoin someone claims to have sent
them. They can know trustlessly the state of a
dApp on Ethereum. They can know trustlessly
that a document shared via IPFS is indeed the
document matching the CID for that document.
They can know that the terms of a smart contract
will be honored. They can know the price history
of an NFT has not been edited for their eyes only.
Moreover, they can interact with these systems se-
cure in the knowledge that their wishes will be re-
spected and not distorted. These are just some of
the many benefits available to sophisticated users
of the decentralized internet.

However most users of the internet are not at
that level of sophistication, and cannot be expected
to be. What is needed is a suite of user interface
motifs that ordinary users recognize as legitimate
and which app and dApp developers adopt with
the same ubiquity that people have adopted the
padlock to indicate that a website really belongs
to the url in the address bar. Elaborating what
those motifs must look like and how they must in-
teract with and connect with existing and emergent
systems is the topic of this whitepaper.

2. What is the decentralized internet?

The history of the internet is nearly as old as the
history of the computer, and early pioneers began
sketching out the basic principles of the internet
at least as far back as the early 1960s [2]. In the
time since then, there has been, in broad terms, an
ongoing tension between two competing mindsets.
The first mindset places computers in the hands of
large institutions, and these computers are power-
ful by the standards of the day. The second mind-
set seeks to make computers available to ordinary

people, with smaller physical size, enhanced usabil-
ity and reduced cost.

At first glance, today it seems that the sec-
ond mindset has won the day. Whereas in the
1960s and 1970s computers were found in the of-
fices of banks, government agencies and other suit-
ably resourced organizations, today not only do or-
dinary people own desktop and laptop computers,
they also often own phones, tablets, watches and
other devices that are essentially computers but in
another form factor. Computers are literally all
around us.

However, in parallel with the move to more
ubiquitous computer ownership, since the early
2000s and the rise of “cloud computing” many of
the benefits of computer ownership that led to the
adoption of the personal computer in the first place
have been lost. We have gone from accounting
records being kept on a mainframe computer at
a bank in the 1970s, to those records sitting on a
user’s own computer in the 1990s and early 2000s,
to that same accounting data sitting on the servers
of companies like Intuit today. The mainframe
computer has returned by the back door, and it
has done so in every industry.

The decentralized internet is an effort to reverse
this tide and bring about a new era of personal
computation, where not just computers but com-
putation is genuinely in the hands of ordinary peo-
ple. It can be regarded as being in the same spirit
that companies like Apple sought to put a com-
puter in every home and on every desk, not just in
offices and banks and government buildings. This
spirit is captured in the famous 1983 photograph
of Steve Jobs3 shown in Figure 2.

Let us consider a simple application, a to-do list,
and examine various architectures.

In the “mainframe” architecture, before the in-
ternet, one could imagine a location on the high
street where people go to maintain their to-dos in
exchange for a fee. When someone thinks of a new
to-do item, they go to that location and tell a per-
son at the desk they want to add a new to-do. Sim-
ilarly, when they complete an item they go along
and ask for that to be recorded in a similar way.
All the to-do data is kept by the company oper-
ating the location on a central computer at that
location. If someone wanted to move to a different
provider of to-do services they would have to open
an account with another provider.

3Image courtesy of OSXDaily.
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Figure 2. Computers, and com-
putation, should be in the hands
of ordinary people, not just giant
organizations.

In the “application software” architecture of the
early personal computers, before web browsers or
when they were in their infancy, to-do software
might be available in stores. A user could go to
a shop and buy a physical disk, say a floppy disk
or CD-ROM, which contained application logic for
managing to-dos. The application logic and the
associated user interface is installed on the user’s
personal computer. The to-do data is kept on the
hard disk of the user’s computer. If the user wants
to make a backup copy of their to-do data, they
can save it to something like a floppy disk drive or
an external hard drive.

In the “thin-client” architecture that is common
today, a user opens a web browser and creates an
account at something like todos.com. That ex-
poses a similar interface to the software that could
be bought in the store, but instead of the user’s
to-do data being stored on the user’s computer, it
is stored on the servers of the company operating
todos.com.

None of these architectures are satisfactory.
The “mainframe” architecture where people visit
a physical location is too slow for most purposes.
Meanwhile, the “application software” and “thin-
client” architectures take opposite extreme views
as to how to handle user data. In the former

case, the user has custody of their data, but mak-
ing it interact with other software or users is not
straightforward. Suppose, for example, that some-
one wanted to enable a family member to see their
to-dos. That would mean that family member also
had to install the same to-do application on their
machine, which they might not want to do. Even if
the family member did install matching software,
we run into the issue of how to maintain a matching
data structure for the to-do lists on each machine.
Establishing consensus between the two machines
shows how even by thinking about a very simple
application, we quickly run into the need for a pro-
tocol to maintain consensus, a consensus protocol.

This need to maintain a consensus for applica-
tion data explains the appeal of moving that data
to a remote location that clients can connect to
and use as a single source of truth.

However, users pay a heavy price for using a web
application such as todos.com. When users hand
over their data to a company, they hand over all
control over that data. If the company is hacked,
private information about the user can be leaked.
If the company wants to make extra revenue, it can
sell advertising based on user data, or the data it-
self. If the company goes bankrupt or changes its
mind about what kinds of services it wants to of-
fer, the service may cease to exist, and a user may
lose their data altogether. Alternatively, a com-
pany may exploit high switching costs associated
with changing provider and increase the price for
using todos.com while offering no extra value.

In an ideal world, users would experience the
benefits of application software, specifically the fine
grain control over their data and the knowledge
that the service will not abruptly change, while at
the same time the rich interoperability and shared
experiences provided by a well developed web ap-
plication.

This is the vision of the decentralized internet.
Rather than the browser acting as a “thin-client”
where a user essentially makes a virtual visit to
a company branch containing a mainframe com-
puter, instead software providers reveal software
that comes to the user’s computer. Users then have
tight control over where their data sits. For some
types of data, such as accounting data they use for
preparing their tax filings, they may prefer that
it only sits on their personal machine. For other
types of data, such as social media posts, they may
prefer it to be publicly broadcast. Finally they may
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prefer to share some data with specific other users,
such as family members or their accountant.

While appealing, in the early days of the inter-
net the technology did not yet exist to make this
vision a reality. Specifically, hard problems related
to consensus protocol design had not been solved,
meaning that applications could not be kept in
sync with each other without relying on central
servers for each application.

The advent of Bitcoin in 2008, following decades
of research going back as least as far as the early
1960s, for the first time showed that a robust
data structure could be maintained with no central
server. Just as early mainframe computers found
application in the finance sector, so too Bitcoin
has been regarded, falsely, as a financial innova-
tion when in fact it is a theoretical computer sci-
ence innovation. It is not just financial data that
can be kept securely in sync with itself with no
central server, but any data, including user appli-
cation data. In the nearly 15 years since Bitcoin
emerged, much further progress has been made,
and we now have the ability to build applications
that provide the best of both worlds, as shown in
Figure 3.

Application
software

Web3
Thin-client

web applications

Control
over data

Interoperability across
devices and

between users

Figure 3. Built using blockchain
technology, the decentralized in-
ternet, or web3, allows the best of
both worlds.

Moreover, an architecture where application
software runs on client machines and shares user
data seamlessly without the need for a central
server opens the possibility for a new generation of
applications that have not been possible until now
in any architecture. That is because once there is
consensus about the state of an application, there
is no need for there to be a single interface con-
necting to that data on the frontend, and users

can use applications that read and write data in a
way that is unopinionated about how other users
are interacting with that data.

In summary, the best way to understand the de-
centralized internet is, for those of us old enough
to remember, to think back to the days when we
bought software in a store and kept track of our
own data using our own storage. The decentralized
internet is much more similar to that model than
the browser based “thin-client” model. The differ-
ence is that now those applications can be richly
and securely interoperable between users, devices
and applications themselves without the need for a
central server. Explaining how this magical tech-
nology works is the subject of the next section.

3. How the decentralized internet works

It will be helpful to recall that our intention of
building applications that do not rely on trusting
a central server is not at all new. In fact, we can
recall the words of Paul Baran who introduced his
seminal 1964 memorandum [2] as follows:

“Let us consider the synthesis of a com-
munication network which will allow
several hundred major communications
stations to talk with one another after
an enemy attack. As a criterion of sur-
vivability we elect to use the percent-
age of stations both surviving the phys-
ical attack and remaining in electrical
connection with the largest single group
of surviving stations. This criterion is
chosen as a conservative measure of the
ability of the surviving stations to op-
erate together as a coherent entity af-
ter the attack. This means that small
groups of stations isolated from the sin-
gle largest group are considered to be
ineffective.”

With these thoughts in mind, it becomes clear
why a centralized architecture is vulnerable. If all
communications go through a central headquar-
ters it means that if that central organizing unit is
destroyed all further communication disintegrates.
This led Baran to present two alternative archi-
tectures as alternatives to the centralized archi-
tecture. Baran’s original illustration is shown in
Figure 4.
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Figure 4. Paul Baran’s three ar-
chitectures for data synchroniza-
tion as articulated in 1964.

The two alternatives, shown in Figure 4, are a
decentralized architecture and a distributed archi-
tecture. It should be emphasized that these are
not the same.

Today, the internet is a complex mixture of
centralized, decentralized and distributed systems.
For example, the services of the majority of inter-
net technology companies today may be regarded
as centralized. On the other hand, the vast in-
frastructure that moves packets of data around
the world efficiently while avoiding bottlenecks via
TCP/IP is better regarded as a distributed system.

The complex architecture we have today did not
arrive overnight, but instead over a period of time.
The first peer-to-peer message sent between two
computers was in 1969 at ARPA (later DARPA),
and the first email was sent in 1971, also at ARPA.
TCP/IP was adopted as a standard protocol in
1983 and the first web server went live at Stanford
in 1991. Finally, the World Wide Web was made
freely available to the public in 1993.

The question arises: How can all these various
different systems work together?

At this point we will step away from the digres-
sion into history and recall the core concept of Sec-
tion 1, which is that if information is sent in a way
that is trustless, it does not matter how the infor-
mation is sent or what happens to it between the
sender and receiver. This concept is essential for
services like online banking today, and it is equally
essential for the decentralized internet. In both
cases, computers arrange themselves in some sort
of network where they can pass messages around
between each other, and the integrity of the sys-
tem can be maintained by ensuring that the data

that is being passed around is in the form of digital
certificates, that is packets of data from which a re-
ceiver may infer some information without reliance
on what happened to that information before they
received it. An example of this is the way that dig-
ital certificates can be used to convey to a user that
they are indeed viewing the website corresponding
to the url in the address bar, assuming they trust
their browser and operating system.

The fundamental difference between the exist-
ing internet and the decentralized internet is the
following: Whereas the validity of a url in an ad-
dress bar is certified using a chain of digital cer-
tificates that is only several certificates in length,
the decentralized internet is based on the idea that
useful data structures can be securely encoded us-
ing great multitudes of digital certificates.

For this reason, it will be helpful to introduce
some formalism for understanding the different
types of digital certificate and how they may inter-
act with one another. To that end we will distin-
guish between three different types of digital cer-
tificate as follows:

Definition 2. Suppose (M,P ) is a digital certifi-
cate. Suppose M contains an identity marker x
and suppose also that P is of the form: “The au-
thor of M was in possession of secret information
associated with x.” Then we say the digital certifi-
cate (M,P ) is a proof of authorship certificate.

Definition 3. Suppose (M,P ) is a digital certifi-
cate. Let A be a monetary amount. Suppose P is
of the form: “At least A was expended to produce
M .” Then we say the digital certificate (M,P ) is
a proof of work certificate.

Definition 4. Suppose (M,P ) is a digital certifi-
cate. Suppose M contains a data identifier x and
contains or otherwise references data D. Suppose
P is of the form: “The data D correctly corre-
sponds to x.” Then we say the digital certificate
(M,P ) is a proof of authenticity certificate.

An example of a proof of authorship certificate
is a message signed with RSA. Here, x is the pub-
lic key and the secret information is the private
key corresponding to x. We say that the user
creating M has signed the message. The advent
of the decentralized internet has popularized the
term wallet, which is software similar to a password
manager but instead of storing passwords a wallet
stores private keys that a user can use for signing
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messages. An example of a proof of work certificate
is a string whose SHA256 hash is less than some
given threshold. Such proofs of work are key to
the Bitcoin protocol. An example of a proof of au-
thenticity certificate is a file obtained using IPFS.
In that case the identifier is the CID of the file and
the data is the file itself. There are many other
types of digital certificate, but these three provide
the backbone of the decentralized internet.

Digital certificates do not exist in isolation, so
let us now introduce some further formalism to
characterize how digital certificates may exist con-
tingent on one another.

Definition 5. Suppose Bob receives a message M ′

and suppose also that Bob knows proposition P to
be true. If Bob is able to independently verify the
truth of proposition P ′ using no information other
than what is contained in M ′ and the truth of P , we
say that (M ′, P ′) is a certificate contingent on P .
If (M,P ) is itself a certificate, we abuse language
and say that (M ′, P ′) is a certificate contingent on
(M,P ). We call (M ′, P ′) a contingent certificate.
The certificate (M,P ) may itself be contingent.

Intuitively, this is formalizing the chains of dig-
ital certificates used to verify a url in a browser
address bar. In that case the certificates in ques-
tion are proof of authorship certificates. The fi-
nal certificate in the chain says: “I am Charlie,
and you can trust me because Bob says you can
trust me. This is the public key corresponding to
bankofamerica.com.” The previous certificate in
the chain, on which Charlie’s certificate is contin-
gent, says: “I am Bob, and you can trust me be-
cause Alice says you can trust me. You can trust
Charlie to tell you the public key corresponding
to bankofamerica.com.” Eventually, to prevent
the chain running forever, if the only certificates
we are allowed are proof of authorship certificates,
we have no choice but to eventually trust a root
authority.

The central theoretical innovation in the Bitcoin
protocol is that a chain of certificates does not need
to terminate with a trusted root authority, but in-
stead with a proof of work certificate. If Bob sends
Charlie $100 in Bitcoin and Charlie wants to verify
the transfer, he may inspect a certificate signed by
Bob that says “I send Charlie $100 in Bitcoin.”4 To
make sure Bob has $100 in Bitcoin to send, Char-
lie may inspect another certificate or certificates
confirming that a person or people had previously
sent at least $100 to Bob. Eventually, following
the chain of certificates (also known as transac-
tions) all the way back, the chain stops with one
or more proof of work certificates. The person who
generates the proof of work certificate also verifies
that nobody in the chain of transactions sent their
last $100 to multiple people, in other words that
there was no double spending. This is achieved by
giving the person who generated the proof of work
certificate a bounty in the form of some amount of
Bitcoin for doing the proof of work, but in order to
claim that bounty they have to look through the
complete list of transactions so far and certify that
there has been no double spending. They also cer-
tify any new transactions as not resulting in double
spending. The person who generated the proof of
work certificate, known as a miner, could fail to
obey these rules, but then they would lose out on
the bounty.5 Given that the miner has expended
resources to generate the proof of work certificate,
in practice they do not break the rules and instead
obey the rules and claim the bounty.6

Summarizing what was just said, it is not the
case that Charlie can inspect a collection of cer-
tificates and verify the statement: “Bob sent me
$100.” However it is the case that Charlie can ver-
ify a statement along the lines of: “Either Bob sent
me $100 or, with very high probability7, someone
spent at least $1,000,000 to trick me.” If Charlie
wanted to increase the number $1,000,000 to, say,

4Of course, Bitcoin transactions are not denominated in US dollars but instead in Bitcoin itself. We refer to dollar
amounts for ease of reading.

5Additionally, a person making a transaction also attaches a small bounty, called a fee, which is paid to the person
who generated the proof of work as an incentive to record and certify the transaction.

6For an excellent introductory talk on the mechanics of Bitcoin which goes into more detail on the theoretical computer
science of consensus protocols, see: https://vimeo.com/314137501

7We add the caveat “with very high probability” because the cost of generating a proof of work certificate is not
deterministic, but exists on a distribution. The cost of generating a proof of work certificate is distributed in a similar
way to the cost of generating a winning lottery ticket; with very high probability someone needs to buy a lot of tickets
but in principle they could be lucky with just one. Even if a miner was very lucky and was able to generate a proof of
work certificate for nearly nothing, the miner would still be incentivized to obey the rules of the protocol to claim the
bounty. Thus if we replace the word “spent” with “forwent” we may remove the “with very high probability” caveat.
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$10,000,000, Charlie could simply wait for more
miners to produce some more proof of work certifi-
cates and see that they also verify the complete list
of transactions as valid and containing no double
spending. Every time a miner adds a new proof of
work to the complete list of transactions, known
as the ledger, we call the new proof of work and
the associated new transactions a block. The col-
lection of all the blocks is called the blockchain.
Thus, to add extra confidence to the transaction,
Charlie can wait for some more blocks to be mined
and added to the blockchain.

When a block is added to the blockchain, it is
important that it cannot be changed after the fact.
For this reason a proof of authenticity certificate is
used. Specifically, each new block incorporates a
special number called a hash that is generated by
the previous block. The hash is the data identifier
in the definition of a proof of authenticity certifi-
cate and the previous block is the data. In addition
to their other duties, the miners check that each
block correctly refers to its previous block when
they certify the blockchain as valid, and again if a
miner failed to do so they would lose out on their
bounty.

Sometimes it may be the case that two or more
miners generate a proof of work at around the same
time and before either knows about the other’s
block. This is resolved by the convention that the
blockchain with the longest chain of blocks is the
correct one. Thus, miners are incentivized to mine
for blocks that add to the longest blockchain. For
this reason, it can be the case that there are mul-
tiple versions of the blockchain with differing fi-
nal blocks, but as soon as one of the competing
blockchains develops a lead it leaves the others be-
hind and becomes the authoritative ledger. In the
case of Bitcoin, new blocks are generated on aver-
age every 10 minutes8 while new blocks are broad-
cast between the miners in seconds or fractions of
a second, so in practice multiple competing blocks
don’t arise very often.

It is important to emphasize that large parts of
the Bitcoin protocol are unenforced. For example,
the question arises as to how the miners obtain
the transactions to add to the ledger. Remarkably,
this is done with a peer-to-peer network operating
on a best effort basis. That means that people who
want to help the community do so by listening for
transactions and broadcasting valid transactions to

other people they are in touch with. The people
who do this are said to be running nodes. The
collection of transactions circulating between the
different nodes is called the mempool. It doesn’t
matter that some, or even the majority, of nodes
might be selfish and listen for transactions while
not broadcasting them on. What matters is that
anyone, for example a miner or someone running a
node, can quickly check the validity of the transac-
tions they become aware of. The worst a selfish or
even malicious node could do to disrupt this is to
stay silent as any fake transactions can quickly be
identified as such and any node broadcasting fake
transactions can be quickly shunned.

The Bitcoin nodes themselves may be regarded
as a distributed system, whereas if one considers
the nodes together with every device that connects
to a node, it is better regarded as a decentralized
system.

The mechanics of Ethereum is largely similar.
The main difference is that instead of just keep-
ing track of financial transactions and the state of
the ledger, Ethereum also keeps track of computer
code and the miners calculate the result of that
code and keep track of the results. While this idea
may sound simple, in practice it is much harder
than it may sound because a malicious or careless
user could enter some code that never terminates.
For example, someone could ask Ethereum to exe-
cute code that set i = 0 and then incremented i
by 2 forever as long as i never equals 9. If that hap-
pened, the code that generated new blocks would
“hang” and never produce a new block.

One might wish to get around this problem by
inspecting each program to be run on Ethereum to
make sure it won’t run forever before running it.
Unfortunately, a famous result in theoretical com-
puter science called the halting problem says this
is impossible, so another approach is needed.

There are two main alternative approaches that
have been used. The first way is to restrict the
types of programs that can be executed to not al-
low loops that might hang. This is in fact the ap-
proach used in Bitcoin. The way that transactions
are recorded in Bitcoin is somewhat more compli-
cated than described earlier in this section. Instead
of Bob signing a certificate that says “I send $100 of
Bitcoin to Charlie,” he signs a certificate that says
something like: “This $100 of Bitcoin can now be

8This is ensured by programmatically adjusting the difficulty of the proof of work.
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sent by anyone able to give inputs to the follow-
ing code that returns true.” To make sure only
Charlie is able to send the Bitcoin on, Bob uses
Charlie’s public identifier in such a way that only
someone knowing the associated secret information
can make the code return true with a proof of au-
thorship certificate. Here, the code is written in a
language called Bitcoin Script and it has the prop-
erty that it does not allow loops that might run
forever. While preventing programs from hang-
ing, this has the downside that Bitcoin Script is
not suitable for developing real applications be-
yond those concerned with moving Bitcoin between
users and other very simple toy applications. Be-
cause Bitcoin Script does not allow certain types
of computer programs, we say that Bitcoin Script
is not Turing complete.

The approach Ethereum takes is different. In-
stead of using a restricted programming language
like Bitcoin Script, Ethereum allows users to give
instructions using a Turing complete programing
language, effectively allowing a user to write any
program. To prevent programs from running for-
ever, a user must state in advance how many com-
puter operations will be needed and pay for those
computations. If they underestimate the number
of computations that will be needed their program
will not be executed. Similar to the way Bitcoin
transactions include a transaction fee to incentivize
miners to include the transaction, people executing
code with Ethereum include a similar fee called a
gas fee to incentivize the miners to include their in-
structions in the next block. The net result is that,
instead of relaying certificates containing financial
transactions, the Ethereum protocol enables Bob
to verify something along the lines of: “Either Al-
ice executed the following function resulting in the
following state in an abstract computing environ-
ment or, with very high probability, someone spent
at least $1,000,000 to trick me.”

In recent years, there has been a movement to an
alternative to proof of work called “proof of stake.”
The distinction between proof of work and proof of
stake is not important for our purposes. What is
important is that proof of stake facilitates a recipi-
ent to verify a statement to the same effect as with
proof of work. It is not theoretically impossible to
change a transaction on Bitcoin or Ethereum after
the fact, however it is cost prohibitive to do so.

So far we have considered how one may simulate
a computing environment with no central server.
Using a system such as Ethereum one could in
principle develop any application. However the key
question remains: Is this system fast, scalable and
cost effective?

Unfortunately the answer to the question is: No.
There are two main reasons for this. First, with
Ethereum every miner not only stores the com-
puter instructions, but also evaluates them. That
means every line of code written by a developer
making an application with Ethereum must be
evaluated as many times as there are miners. Sec-
ond, even for an application that is only of interest
to two people, the entire network has to participate
in checking the computation is valid and storing
the relevant information.

Recent years have seen tremendous progress re-
garding both of these problems. Regarding the
first problem, Bitcoin Computer9 is an approach to
computation using a blockchain which only stores
the instructions on the blockchain, but leaves the
computation to be carried out by interested par-
ticipants. That results in a reduction in the cost of
computation of many orders of magnitude as com-
pared to Ethereum, but still leaves the question of
storage.

Regarding that second issue, in 2011 Shapiro
et. al. [6] presented the concept of a Conflict-Free
Replicated Data Type (CRDT), which is a method
of maintaining consensus across a network of com-
puters. CRDTs lack the long-term security of a
blockchain like Bitcoin or Ethereum, but present
a method for computers to connect to each other
and maintain consensus without relying on a cen-
tral server and at close to zero cost.

We will conclude this section with the question
of the scalability of the digital certificates them-
selves, rather than the overall system. For techni-
cal reasons, proof of authorship digital certificates
cannot be too big. For example, a message signed
using RSA-2048 is limited to just 245 ASCII char-
acters. While one could extend that limit some-
what by concatenating multiple messages, for any
larger data type, an image or video file for exam-
ple, it is not practical to sign the message itself
with a proof of authorship certificate.

Instead, what can be done is that the image or
video file can be authenticated with a proof of au-
thenticity certificate. The resulting data identifier,

9See: https://www.bitcoincomputer.io
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often called the hash of the file, is short enough 
to be signed with a proof of authorship certifi-
cate. Thus, when building an application using 
technology such as Ethereum, one would typically 
not store large files themselves, but instead only 
the hashes of the files. This is no great loss, since 
a user is able to verify the authenticity of the file 
using the proof of authenticity certificate, provided 
they are able to obtain the file itself.

An example of a system that enables the sharing 
and storage of files is IPFS. In that system, files 
are identified with the hash of the file itself, sup-
ported by a distributed peer-to-peer network to 
store and propagate the files. Similar to how trans-
action fees and gas are used, respectively, in Bit-
coin and Ethereum, Filecoin adds an intricate in-
centive layer to IPFS to encourage file storage. 
Users wishing to avoid using the incentive layer can 
simply pay companies like Pinata in fiat currency 
to store their files on IPFS and make them avail-
able to the network. Because of the use of proof 
of authenticity certificates, someone receiving a file 
could be completely indifferent as to where the file 
came from, how its storage was paid for, or the 
protocol by which it was communicated.

There is a great deal more to discuss regarding 
the decentralized internet, but the broad themes 
have been laid out. In the manner described above, 
a sophisticated user can access applications that 
are trustless contingent on minimal assumptions 
about the integrity of the cryptography underly-
ing the individual certificates and the incentive-
following behavior of the miners operating the var-
ious decentralized systems. Moreover, recent de-
velopments mean that meaningful decentralized 
applications can now be built that are compu-
tationally intensive, reliant on large amounts of 
data, fast, with strong guarantees as to the cryp-
tographic soundness of the underlying data struc-
tures, and all at reasonable cost.

However, all this progress is worth very little 
without a way of conveying to a user what is and 
is not to be trusted. The question of communicat-
ing trust is the subject of the following section.

4. Enso: An overview

To fully describe Enso will take some time. It 
is part web browser, part wallet and part node. It 
also critically relies on online services to ensure a 
fast and seamless user experience. However, in this

section we will put aside technical details and fo-
cus on what a user actually sees, and how they may
understand and interact with what they’re seeing.

Enso is built around the idea that a user should
be able to understand what is true through their
user interface. To facilitate this, it is necessary for
a user to understand that there are certain types
of experience they may encounter that a malicious
developer could use to lie to them, while there are
other types of experience that a malicious devel-
oper would not be able use as a tool for dishonest
communication.

The simplest first step to achieving this is to sep-
arate the screen into distinct areas which may or
may not be available to a developer to manipulate.
In a regular browser this is achieved by rendering
the web app in a rectangle of screen, while reserv-
ing the top part of the window for communications
from the browser itself, including the address bar
and padlock. This is illustrated in Figure 5.

Protected user interface

Rendered by application

Figure 5. Protected versus non-
protected user interface areas in a
normal browser.

While a thin area of the screen at the top of a
browser window is big enough for an address bar,
including padlock, and a few other user interface
items, it is not big enough to show anything in-
volving larger portions of text.

One way to overcome this, as used by browser
extension wallets such as MetaMask, is to break
the line that separates the protected part of the
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browser window from the part rendered by the ap-
plication with an overlay box that itself contains
protected user interface. While an application de-
veloper can send messages to that part of the in-
terface, they may not draw on it directly. This is
illustrated in Figure 6.

Figure 6. Extending the pro-
tected part of user interface by
“breaking the line.”

Let us consider a simple example. Suppose that
Bob (full name Bob Smith) wants to make a public
social media post that says: “Today I ate break-
fast. Everyone should eat breakfast.” When Alice
sees Bob’s post, she wants to know that Bob really
made the post. Let us examine how this can be
achieved with what we have introduced so far.

Using RSA or something equivalent, Bob can
sign a proof of authorship certificate that says:
“Today I ate breakfast. Everyone should eat break-
fast.” Bob then disseminates the certificate in a
way that Alice can receive. It doesn’t matter how
this is done. Bob could publish his post via an
HTTP server, or store it on a blockchain, or use
a peer-to-peer network like IPFS, or send it to Al-
ice directly. However Alice receives the certificate,
upon receipt she can assure herself by inspecting
the signature that someone with a certain public
key signed the message. Therefore, it would be
possible to develop a user experience that looks
something like Figure 7.

While Alice may feel reassured that the post
that claims to be by Bob has been signed by some-
one, unless she knows that the displayed public

MEgCQQCo9+BpMRYQ/dL3DS2CyJx
RF+j6ctbT3/Qp84+KeFhnii7NT7
fELilKUSnxS30WAvQCCo2yU1orf
gqr41mM70MBAgMBAAE

Bob Smith’s posts:

Bob Smith’s posts:

VERIFY

Today I ate breakfast. Everyone should eat breakfast.

Today I ate breakfast. Everyone
should eat breakfast.

Today I ate breakfast.

Signed by:

Figure 7. The limitations of us-
ing public keys to identify people.

key corresponds to Bob Smith, she doesn’t have
any information at all about whether Bob indeed
authored the post.

We have discussed problems very similar to this
in Section 1. The problem of matching Bob Smith
to a public key is structurally the same as match-
ing a url like bankofamerica.com to a public key.
If that can be done in a way that Alice trusts, she
would be able to know that Bob indeed authored
the post.

There have been a number of attempts to match
identities to public keys that do not rely on trusted
authorities. One approach is to use features of a
person’s real identity, their name, date of birth and
so forth, as a seed to generate the public/private
key pairs commonly used for proof of authorship
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certificates. This is called Identity-Based Encryp-
tion (IBE). See [1], for example. Another approach
is to use webs of trust. These are peer-to-peer net-
works in which the nodes share with each other
the public keys of identities they know. One of the
main implementations of this idea was Pretty Good
Privacy or PGP. See [5], for example.

Neither approach has been able to displace
trusted authorities. The first approach, while in-
tuitively appealing, encounters the problem that
as identities are public, anyone who knows how
to convert a real identity into a public/private key
pair would be able to sign anyone’s messages. This
is known as the key escrow problem. Keita et. al
have recently proposed a solution to the key escrow
problem [3], but their solution is highly technical
and also relies on the presence of a trusted author-
ity to certify identities, obviating the intention of
not relying on a trusted authority.

Regarding the second approach, webs of trust
run into the problem that they rely on users to
take the time to build up an address book of known
public keys and their corresponding real identities.
Figure 8 shows a party where participants are ex-
changing public keys with one another10, which
perhaps sheds some light on why webs of trust have

Figure 8. One approach to
building a list of known public
keys.

never gained widespread adoption with ordinary
users of the internet11.

In any event, it would be fair to say that find-
ing a robust, trustworthy alternative to the trusted
certificate authority model is an area of ongoing re-
search. It is possible that in the future there may
emerge a reliable way of knowing that a certain
public key corresponds to a certain identity with-
out making use of a trusted authority, but no such
method exists at this time.

Thus, for now we are forced to accept the need
for certificate authorities in order to build appli-
cations that use real identities and we will assume
that a trusted authority has certified the connec-
tion between Bob’s public key and Bob Smith’s real
identity. For the sake of our presentation, we will
call this trusted authority Web3 Identity Services,
Inc. In this way, we may create an interface that
looks something like that shown in Figure 9.

Of course, Bob Smith is likely not to be the
only person by that name, so it make sense to dis-
ambiguate him from the other people called Bob
Smith. To achieve this, note that Bob Smith
has many other characteristics, such as his age,
where he went to school, places of employment,
geographic location, and so forth. This informa-
tion, similar to what one might find on a LinkedIn
profile page, can all be certified by appropriate au-
thorities, and that can in turn be presented on the
screen in the overlay area of the user interface.

The drawback of this approach is that if we fill
the overlay box with too much information it ei-
ther has to extend far down the page so that the
lower portions can only be reached by scrolling the
main window, or alternatively the overlay panel
itself has to scroll. Both these solutions are unsat-
isfactory as they constrain a page that should take
up the whole window in the small overlay box.

Thankfully, there is an alternative approach.
We have said previously that the screen is divided
into a trusted area at the top and an area that
an app developer can use at the bottom. While
the bottom area does not have control over the
top area, the reverse is not the case as the inter-
face can control everything on the screen. Provided
that there is an indication in the top area of screen
that the bottom area of screen should be trusted,

10Image courtesy of Wikipedia.
11For an informative post on the limitations of the web of trust model, see: https://medium.com/@bblfish/

what-are-the-failings-of-pgp-web-of-trust-958e1f62e5b7.
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Bob Smith’s posts:

Bob Smith’s posts:

Today I ate breakfast. Everyone should eat breakfast.

VERIFY

Today I ate breakfast. Everyone
should eat breakfast.

Today I ate breakfast.
Signed by:

Bob Smith

Identity verified by:
Web3 Trust Services, Inc.

Figure 9. Using a certificate au-
thority to connect real identity
with a public key.

and the user understands that only the top area of
screen is able to make this declaration, we may use
the entire screen to convey the information we de-
sire about Bob Smith. This is illustrated in Figure
10.

The question arises now, if Bob’s employment is
verified by his employer, how is the employer veri-
fied? This turns out to be a rather thorny question;
an institution like a company does not act for itself
but instead has authorized people, executive offi-
cers and directors and such, who act on its behalf.
Those authorized representatives in turn need to
be verified, and their association with the institu-
tion also needs to be verified. What if Bob was
not a regular employee at Widget Manufacturing

Bob Smith

Bob Smith
Identity and photo likeness verified by:
Web3 Trust Services, Inc.

Employment

Widget Manufacturing Systems, Inc.
Widget Manufacturing Supervisor 2016 – 2020

Employment verified by:
Widget Manufacturing Systems, Inc.

Figure 10. Provided the user
knows to check the trusted area of
the screen, the entire window may
be used to display trusted content.

Systems, but instead its owner and CEO? Could he
then certify himself? These questions require care-
ful thought, however questions of this sort are not
new, meaning there is a rich literature on how to
approach the connection of real and digital identi-
ties using digital certificates. See [4], for example.
In very brief summary: Bob is not allowed to cer-
tify himself. Instead we insist that everything that
is being vouched for must eventually make its way
back to a root authority via a chain of delegated
authority. If the chain runs around on itself, that
is not valid.

Thus, we will assume that it is possible to view
a page for a person or institution and see reliable
information, that is information that has been cer-
tified as true by trusted or legitimate authorities,
and the chain of certification is visible to a user if
they wish to scrutinize it.

Let us then return to Bob’s public post, and
Alice’s desire to see that he really did make the
post that she is being shown. One approach is
that when Alice clicks VERIFY in the top image
of Figure 9 she could be taken to a section of Bob’s
profile (Figure 10) showing that post. There is cer-
tainly nothing stopping the profile page of Figure
10 from containing Bob’s properly signed public
posts, however the issue arises that an application
developer who wishes to display Bob’s public posts
may not want to take the user to another page
every time the user wants to verify the integrity
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of a post. This would especially be the case if
a page contained many signed certificates, all of
which could be scrutinized by the user, cluttering
up the page with numerous VERIFY buttons.

So, we want to enable a developer to show
trusted information that is generated by a poten-
tially large number of signed certificates. However
we also want to prevent a malicious developer from
abusing whatever freedom they have by lying to
the user. The key question is: Should an app de-
veloper have complete control, on a pixel by pixel
basis, of the lower, untrusted, part of the screen?

It is reasonable to say the answer should be ‘no’.
An example of a system that works in this way is a
bot on Slack. There, a developer has control over
posts and messages and such, but cannot draw ar-
bitrary content on top of the user interface.

Enso takes the opposite view. App developers
can draw arbitrarily on the rectangle of screen re-
served for them. In fact, if a user enters a normal
url like https://google.com then Enso works for
the most part like a normal browser. The top,
trusted part of the user interface shows the url and
padlock (assuming a valid SSL certificate), while
the bottom part shows content written in HTML,
CSS, and Javascript. However, whereas a normal
browser gives an implicit stamp of approval to any
website that has a valid SSL certificate, Enso gives
no such reassurance. When a user visits a nor-
mal website in the normal way with Enso, they are

https://shadywebsite.com

Connected to https://shadywebsite.com on a secure connection.
Information provided to you by https://shadywebsite.com may not be accurate.

Breaking news:
“I don’t like breakfast!” says Bob Smith.

Figure 11. A secure connection,
but not necessarily a trustworthy
source.

warned that there are no guarantees about the
truthfulness of the content they are seeing. This is
illustrated in Figure 11.

We now reach the following question: If applica-
tion developers can draw arbitrary content on the
untrusted portion of the screen, what is to stop
them lying to the user? One approach that has
been used, for example by the Apple app store, is to
audit every app available for users. This approach
has many advantages for users who want a very safe
experience, but it dramatically slows down the de-
velopment and deployment process, and allows for
rent seeking behavior if there is a single company
acting as sole gatekeeper.

Enso approaches the question of conveying
trusted content as follows. First, it is the case that
an app can be audited and if it has been audited
then the user can be informed of this. Second,
the certification of satisfactory audit status is del-
egated in a similar way to the way SSL certificates
are delegated. In this way, a developer can produce
an interface that looks something like that shown
in Figure 12.

Breakfast Posts

Recent posts about breakfast:

This app has been audited by Web3 Trust Services, Inc.
To view the full report regarding this app, click here.

Bob Smith

Today I ate breakfast. Everyone should eat breakfast.

Figure 12. If an app has been
audited and the user trusts who-
ever did the audit, then the whole
screen can be used to convey
trusted information.

What has been introduced so far would be a very
satisfactory basis for an interface for web3 appli-
cations. However, it would necessarily be a some-
what slow process to release an app if every time
the developer wanted to make an update they had
to resubmit their application for audit. Ideally, a
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developer would be able to display trusted content
in their application, while at the same time not
having to submit their application for audit.

Enso achieves this by enabling apps to dis-
play trusted content over the untrusted part of
the screen without the need to break the line
between the trusted and untrusted part of the
screen. Specifically, when a user starts using Enso,
they enter some secret information, for example a
hand-drawn circle, and that is used to designate
a trusted part of the screen. This is illustrated in
Figure 13.

https://breakfastposts.com

Connected to https://breakfastposts.com on a secure connection.
Look for content marked with your secret symbol for trusted content.

Recent posts about breakfast:

Bob Smith

Today I ate breakfast. Everyone should eat breakfast.

Figure 13. Trusted content may
appear in the middle of the page
provided it is marked with secret
information a developer does not
have access to.

A trusted box is simply an app that has been
audited drawn in a window that floats over the un-
trusted part of the interface. Note that it is not an
iFrame for the simple reason that an application
developer could draw over the top of an iFrame
and thereby trick the user. Instead the trusted box
is a completely new browser view that happens to
sit on top of the main application for the page. It
is an audited application that happens to be in a
smaller window positioned over the top of another
application.

So far we have mainly been concerned with how
a user may understand that they are being shown
accurate information. To recap: Sometimes they

Today I ate Breakfast. Everyone
should eat breakfast.

Today I ate Breakfast. Everyone
should eat breakfast.

Today I ate Breakfast. Everyone
should eat breakfast.

CONFIRM POST

CONFIRM POST

CONFIRM POST

Bob Smith

Bob Smith

Bob Smith

Trusted Posts

This app has been audited by Web3 Trust Services, Inc..
To view the full report regarding this app, click here.

https://breakfastposts.com

Connected to https://breakfastposts.com on a secure connection.
Look for content marked with your secret symbol for trusted content.

Breakfast Posts

Figure 14. Three alternative
ways to confirm a user action in
a trusted manner.
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may see an overlay box that breaks the line sepa-
rating the trusted and untrusted parts of the win-
dow. Sometimes they may see that an applica-
tion has been audited in which case they can trust
everything in the window contingent on trusting
whoever did the audit. Sometimes there may be
an audited application within another application,
marked by secret information. Finally, they might
see a normal website in which case they are warned
that while the connection may be secure, there are
no guarantees about the trustworthiness of what
they are seeing.

Let us now turn to the question of how Bob
creates his post and signs it with his private key.
Similar to with the display of information, it is
important that Bob knows which part of the user
interface is to be trusted and which part isn’t. This
is achieved in the exact same way as with informa-
tion display, as shown in Figure 14. Crucially, with
audited applications, either standalone or inside an
untrusted application, part of the audit process is
the verification that accurate human readable de-
scriptions have been provided for what the appli-
cation is doing when a user takes a certain action.

Indeed, this principle of showing which parts of
the interface can be trusted and which parts can-
not necessarily be trusted extends to everything a
user does with Enso. These actions include shar-
ing data with specific other users, publicly broad-
casting data, sending money or cryptocurrency to
another user or organization, making purchases of
physical or digital products and updating informa-
tion stored either locally or remotely.

5. DNS with Enso

Enso is in many ways similar to a web browser.
In fact, if one defines a web browser as software
that renders applications from the internet, writ-
ten in HTML, CSS and Javascript, in a rectangle
on the screen, then Enso is a web browser. How-
ever, if one defines a web browser as software that
makes an HTTP request to a server and displays
the result on the screen, then Enso is much more
than a web browser.

When a url is entered into the address bar of a
normal browser, the domain name is resolved to an
IP address using DNS, and then that IP address
is sent an HTTP request. In other words, a web
browser cares about where the request is responded

to from.
The actual mechanics of DNS lookups is quite

involved and not important for the present discus-
sion. When a user enters a normal domain name
such as https://breakfastposts.com in the ad-
dress bar in Enso, the DNS lookup is exactly as it
is in a normal browser.

It is worth contrasting the approach of spec-
ifying an application with a domain name
with the approach taken by a system such
as IPFS. Using a suitable browser exten-
sion12, a user can enter an address such as
ipfs://QmbWqxBEKC3P8tqsKc98xmWNzrzDtRLMiMP
L8wBuTGsMnR to retrieve a web application. Here,
the text following ipfs:// is the data identifier for
a proof of authenticity certificate. In other words,
specifying a webpage using a proof of authentic-
ity certificate such as an IPFS CID cares about
what the resulting application code is. This use of
proof of authenticity data identifiers for identifying
content has its benefits, but at the cost of the iden-
tifier no longer being meaningful or memorable to
humans.

This tension between human readable domain
names such as https://breakfastposts.com and
non-human readable identifiers such as IPFS CIDs
has been formalized with the concept of Zooko’s
triangle [8]. In 2001, Zooko Wilcox-O’Hearn de-
scribed a trilemma between a naming system be-
ing decentralized, secure and human-meaningful.
Wilcox-O’Hearn conjectured that a naming system
can have at most two of the three properties. Thus,
today’s regular domain name system is an example
of a system that is human-meaningful and secure,
but not decentralized, while IPFS CID’s are de-
centralized and secure, but not human-meaningful.
Figure 15 illustrates Zooko’s triangle.

Secure

Human-
meaningful

Decentralized

Figure 15. Zooko’s triangle
presents some of the tradeoffs to
be considered in naming schemes.

12See: https://github.com/ipfs/ipfs-companion
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In recent years, there have been proposals for
alternative naming systems utilizing blockchain
technology that possess all three of the proper-
ties proposed by Wilcox-O’Hearn. An example of
such a system is Urbit, which uses names that
are somewhat readable like ∼fipbud-binzod or
∼tarwed-mostun.

While there is a certain mathematical elegance
to the Urbit naming scheme, it has yet to be proven
that solutions to Zooko’s trilemma of this sort will
be attractive to the general public.

Taking a different approach, Nick Szabo has
written persuasively [7] that the crucial feature of
a namespace is widespread adoption, articulating a
model wherein competing namespaces emerge over
a period of time according to how well they serve
their community.

Following Szabo, Enso embraces the view that
namespaces should emerge over a period of time,
remaining agnostic to how users specify an appli-
cation. If a user wishes to specify an application
by entering an address that starts with https://
they may. Similarly, if they wish to use IPFS to
load a page by entering an address that starts with
ipfs:// they can do that too. This allows for
ordinary users of the internet to continue to use
the internet much like they are used to. Addition-
ally, today’s users of the various web3 technologies
may use applications built using these technologies.
Most important of all, we hold open the possibility
of new technologies and protocols emerging in the
future with minimal friction to the end user. Over
time, technologies and associated namespaces that
are effective and popular with users will be widely
adopted, while those that are less so will not be.

In other words, Enso is not just agnostic as to
where information comes from, it is also agnostic
as to how (i.e. according to which protocol) that
information is delivered.

Instead, Enso scrutinizes application code after
it reaches the client. In order for an application
to be rendered with Enso and be vouched for as
a trusted application, it must somehow deliver to
the client the following pieces of data:

• application code;
• assets, such as image files, required by the
application code;

• metadata including the application name;
• data identifier as used in a proof of authen-

ticity certificate corresponding to the appli-
cation code;

• proof of authorship certificate in which the
author of the application signs the applica-
tion code data-identifier;

• real identity of the author of the application;
• signed certificate from the identity provider
connecting the real identity of the author of
the application to their public key;

• if the URL is human-readable, then proof
that the author of the code has control of
the URL entered in the address bar13; and

• signed certificate from the audit provider
that the code is sound.

Just as public keys associated with SSL certifi-
cates are not especially interesting to the average
user of today’s internet, much of the above infor-
mation is not especially interesting to an end user
of Enso. The two main pieces of information that
an end user cares about are the name of the appli-
cation and that the application is trustworthy. Ad-
ditionally, they may be interested in the author of
the application, and a means of creating a sharable
link to send other people.

Focusing on what is interesting to the end user,
and hiding technicalities necessary to ensure the
information shown to the user is correct, we may
create an interface that looks something like that
shown in Figure 16.

Breakfast Posts

Recent posts about breakfast:

Retrieved securely from https://breakfastposts.com and signed by Breakfast Media, Inc.

This app has been audited by Web3 Trust Services, Inc.
To view the full report regarding this app, click here.

Bob Smith

Today I ate breakfast. Everyone should eat breakfast.

Figure 16. A way to enable a
user to identify a trusted applica-
tion

13For addresses that make use of a proof of authenticity data identifier, such as an IPFS CID, there is no need for this.
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Beyond hiding public keys and other techni-
cal details, the question arises as to whether
there are other things that can be hid-
den from the end user to reduce clutter.
Specifically, in today’s internet it is very
important that a user can see the url and padlock
so they know they’re connected to who they think
they’re connected to. For example, if a user visits
https://bankofamerica.com, the only assurance
they have that they’re really connected to Bank of
America is the url and padlock.

In our case, we have solved the issue of reas-
suring the user they really are connected to the
person or institution they think they’re connected
to using public key infrastructure to certify identi-
ties directly, rather than by using a url as a proxy.
Therefore, the purpose of the url is reduced to cre-
ating a link that can be shared with other users.
Thus, we can simpify the interface further by re-
moving the url altogether, as shown in Figure 17.

Breakfast Posts

Recent posts about breakfast:

Breakfast Media, Inc.

This app has been audited by Web3 Trust Services, Inc.
To view the full report regarding this app, click here.

Bob Smith

Today I ate breakfast. Everyone should eat breakfast.

Figure 17. Removing the url al-
together for trusted applications.

Now, when we look at where we have arrived in
Figure 17, the cleanness of the interface is rather
spoiled by the message explaining that the app has
been audited. While this is important, it seem re-
dundant to keep this in view for the entirety of
the time that a user is using the application, or
indeed whenever they return to the application. It
is rather equivalent to telling a user that a website
has a valid SSL certificate every time they visit
that website. It would be better to hide the de-
tails of the audit message behind a simple icon,
similar to how details about SSL certificates are

hidden behind a padlock. We can achieve this by
hiding the audit message behind a symbol in the
top, trusted part of the interface.

Before turning to how to efficiently communi-
cate the audit message to the user, is worth recall-
ing that there are several pieces of information that
a user is being reassured of. Specifically, when a
user makes use of a trusted application with Enso
they are being told that:

• The application author matches what is dis-
played on the screen.

• The application code has been audited and
contains no malicious or dishonest code.

• The name of the application is an honest de-
scription of what the application is.

• The application has been retrieved in a cryp-
tographically secure way, for example using
HTTPS with a valid SSL certificate.

It would be possible to display a separate icon
for each of these. However a regular user of the
internet would be far better served with a simple
indication of safety indicated with a single sym-
bol that summarizes all of these things, and we
will simply redefine the checkmark introduced pre-
viously to indicate all the reassurances just listed.
Note that the entity that is being vouched for is
the application itself, not the author of the appli-
cation, so we move the checkmark over a little, next
to the name of the application. This leaves room
for an icon to represent the application, chosen by
the author of the application, similar to a favicon.
All this is indicated in Figure 18.

Breakfast Posts

Recent posts about breakfast:

Breakfast Media, Inc.

Bob Smith

Today I ate breakfast. Everyone should eat breakfast.

Figure 18. Bundling all the
technicalities behind a clear and
easy to understand checkmark.
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When a user clicks on the checkmark next to
the application name, they are shown an interface
that exposes the various features of the application
that have been vouched for, similar to what hap-
pens when a user clicks the padlock on a normal
browser.

6. Developing apps with Enso

A major hurdle to the widespread adoption of
the decentralized internet is the divergence away
from the type of programming most developers are
familiar with. Moreover, while developing for de-
centralized systems is hard, developing a normal
web application has become easier and easier.

To illustrate this, it is noteworthy that today a
developer only needs to know one language, namely
Javascript, to develop a full-stack web applica-
tion. This can be accomplished using Node.js on
the backend, and an integrated suite of associated
backend functionality such as that exposed by Fire-
base makes even challenging aspects very easy.

Enso’s approach to development is to enable or-
dinary developers to access the various sophisti-
cated functionalities of the decentralized internet
by injecting into global scope an object called enso.

Like Firebase, the enso object has a variety of
powerful methods attached to it. Unlike Firebase,
each one of these methods not only updates the
state of the sandboxed runtime environment in the
browser and the rectangle of screen being rendered,
but also exposes user interface motifs that extend
beyond the rectangle rendered by the application
in a controlled and predictable way. Also unlike
Firebase, the functionality offered by enso enables
file system access and features only achievable by
running a server on the client computer.

Let us take for example how an IPFS file might
be added in this system. A user clicks upload on
a button shown on the screen which says “Add
to IPFS” and the function enso.ipfs.addfile is
called. This opens a dialogue box showing the user
their file system, much like a normal file upload
box, however the confirmation button says “Add
to IPFS”. The function enso.ipfs.addfile re-
turns a promise, which is resolved when the file
is added or the action is canceled by the user. In
code these instructions can be specified by a de-
veloper in a manner similar to this:

enso.ipfs.addfile(
\\ parameters

).then(result =>
\\ handle result

).catch(error =>
\\ handle error

)

Similarly, suppose a developer wishes to enable
a user to send Bitcoin to another user. This can
be achieved with code along the lines of this:

enso.bitcoin.send(
\\ parameters

).then(result =>
\\ handle result

).catch(error =>
\\ handle error

)

As new technologies emerge, enso will develop
new functionality, meaning that Enso is both back-
ward compatible with the existing internet and for-
ward compatible with emergent technologies.

Some functionality will be available to apps irre-
spective of whether they hold an audit certificate.
Other functionality, notably that associated with
the use of a user’s private keys, will require a valid
audit certificate.

An ordinary user of Enso will not be expected
to enable all the web3 functionality exposed with
enso when they start using Enso. Instead, when-
ever they encounter a technology they have not
yet used, they will go through the necessary on-
boarding process, and this onboarding process is
abstracted away from regular application develop-
ers.

7. Payment model

A key question that arises when considering how
applications are deployed is the question of who
pays for the infrastructure necessary to keep those
applications working.

On today’s internet, for the most part it is ap-
plication developers who pay for hosting. To cover
this cost, either directly or indirectly they pass it
on to their users. Sometimes this is explicit, and
other times it is less explicit, for example when the
application developer has a business model based
around advertising.

When an application developer launches an ap-
plication for use with Enso, all they have to do is
post it in a location where Enso can retrieve the
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necessary data to interpret the application. If they
do this in a way that is persistent, for example by
storing their application on the Bitcoin blockchain,
the application will be available effectively forever,
provided there is a mechanism for Enso to access
the data stored on the blockchain.

The ability for Enso to access, and access
quickly, information stored on a blockchain is no
small detail. One approach would be for each in-
stance of Enso to store locally the whole of every
blockchain of interest, in other words for Enso to
act as a node for each blockchain of interest. This
is not a practical approach. The Bitcoin blockchain
alone is nearly half a terabyte at the time of writ-
ing while the Ethereum blockchain is more than
800 gigabytes.

What is needed is a service that scans the var-
ious blockchains, or related technologies such as
IPFS, for digital certificates of interest, and makes
them available via a fast, low latency service. Such
services exist today, but in general are more tai-
lored for financial trading data than general appli-
cation data.

With Enso, the end user pays for this low la-
tency access to blockchain data. Of course, many
users may resist paying, but the benefit is that ap-
plication developers can launch applications that
scale infinitely and at zero cost to the developer.

This model of separating application develop-
ment and deployment from database administra-
tion is illustrated in Figure 19.

Browser

Browser

Request

Request

Response

Response

Application

Application

Application

Content

Content

Content

Content

Content

Content

Content

Web 2.0 with normal browser:

Web3 with normal browser:

Web3 with Enso:

Enso

Figure 19. How requests are
handled in a normal browser ver-
sus Enso.

8. Privacy

Like other aspects of application development,
Enso approaches the question of privacy with the

goal of providing the user with transparency and
control regarding what applications are doing. For
some information, for example the information a
user shares on a public profile or publishes via pub-
lic social media posts, the issue of privacy does not
arise.

For other types of information, a user may rea-
sonably want to maintain tight control over how
that information is shared. We have already men-
tioned in Section 6 one example of this, namely
how Enso approaches access to a user’s private
keys. Enso approaches the general question of pri-
vate data in a similar way. Specifically, just as
access to private keys is mediated through calls to
methods exposed by the enso object, which in turn
are subject to audit, private data stored in Enso is
accessed via the enso object and, depending on the
specific use case, subject to audit.

Consider, by way of example, a company called
Shoes, Inc. which sells shoes. Suppose a user
wishes to purchase a pair of shoes for $100. To
achieve this it is necessary to send the company
the information it needs to fulfill the order, as well
as $100. This can be communicated via an inter-
face as shown in Figure 20.

A payment of $100 will be made to
Shoes, Inc.

Shoes, Inc. is also requesting the
following information:

• Order Details
• Home Address

This will be sent securely to Shoes, Inc.

CONFIRM PURCHASE

Bob Smith

Figure 20. Confirming the shar-
ing of private information with
Enso.

The specific manner in which the personal in-
formation is sent to the application owner is not
important to the user, so it is not elaborated on in
the interface. One way to achieve this would be for
the application developer to expose an HTTP end-
point and for the data to be sent to an API at that



ENSO: A USER INTERFACE FOR THE DECENTRALIZED INTERNET 21

endpoint. The connection between the entity being
sent the data and the endpoint is established using
public key cryptography as previously discussed.
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